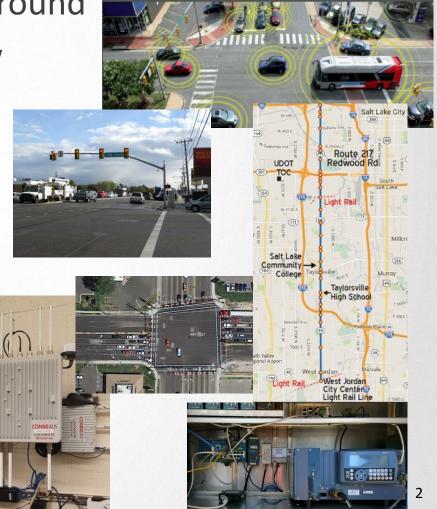


Installing DSRC Systems for Vehicle to Infrastructure Applications



Blaine D. Leonard, P.E., F.ASCE Technology & Innovation Engineer Utah Department of Transportation

Overview

- Connected Vehicles Background
- Utah Deployment Overview
- Software
- Hardware
- Installation
- Project Costs
- System Demonstration
- Challenges
- Recommendations


Transportation Challenges

- Safety (35,000+ deaths per year)
- Congestion
- Travel and Transit Reliability
- Traveler Information
- Truck Parking (I-15 / I-80 / I-70)
- Managing Freight Movements / Ports of Entry
- Specific Road Weather Info / Hazards / Closures
- Incident Management
- Winter Inversion / Poor Air Quality
- Reliable / Real-time Construction Info

CONNECTED VEHICLE TECHNOLOGY CAN HELP US

Connected Vehicles

- The Connected Vehicle system will combine technologies:
 - advanced roadside infrastructure,
 - wireless communications,
 - advanced vehicle sensors,
 - onboard computer processing, and

 to provide vehicles the capability to detect threats and hazards on the roadway and to communicate this to the driver through alerts and warnings.

Automated Vehicles

- Automated Vehicles use various technologies:
 - LiDar
 - Digital Imagery
 - Radar Sensors
 - GPS

- ... to sense their surroundings and take some (or all) driving functions from the human driver
- Six levels of automation

Connected Automation

Connected Automation for Greatest Benefits

Autonomous Vehicle

Operates in isolation from other vehicles using internal sensors

Connected Automated Vehicle

Leverages autonomous and connected vehicle capabilities

Connected Vehicle

Communicates with nearby vehicles and infrastructure

U.S. Department of Transportation ITS Joint Program Office 10

Connected Vehicle Applications

V2I Safety

Red Light Violation Warning Curve Speed Warning Stop Sign Gap Assist Spot Weather Impact Warning Reduced Speed/Work Zone Warning Pedestrian in Signalized Crosswalk Warning (Transit)

V2V Safety

Emergency Electronic Brake Lights (EEBL) Forward Collision Warning (FCW) Intersection Movement Assist (IMA) Left Turn Assist (LTA) Blind Spot/Lane Change Warning (BSW/LCW) Do Not Pass Warning (DNPW) Vehicle Turning Right in Front of Bus Warning (Transit)

Road Weather

Motorist Advisories and Warnings (MAW) Enhanced MDSS Vehicle Data Translator (VDT) Weather Response Traffic Information (WxTINFO)

Environment

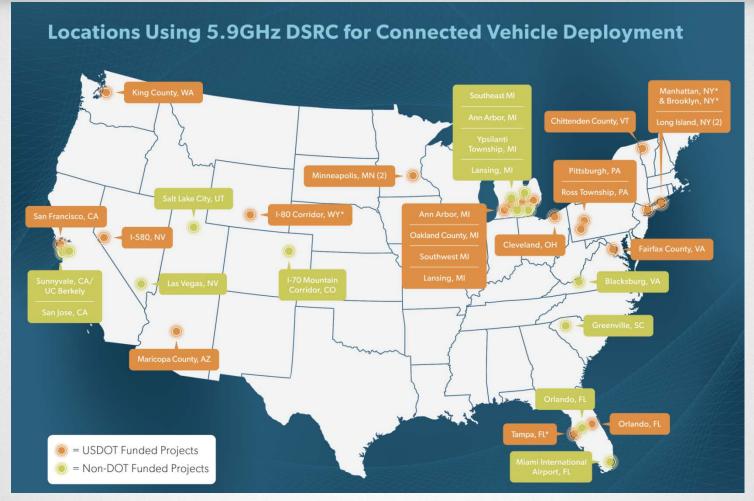
Eco-Approach and Departure at Signalized Intersections Eco-Traffic Signal Timing Eco-Traffic Signal Priority Connected Eco-Driving Wireless Inductive/Resonance Charging Eco-Lanes Management Eco-Speed Harmonization Eco-Cooperative Adaptive Cruise Control Eco-Traveler Information Eco-Ramp Metering Low Emissions Zone Management AFV Charging / Fueling Information Eco-Smart Parking Dynamic Eco-Routing (light vehicle, transit, freight) Eco-ICM Decision Support System

Agency Data

Probe-based Pavement Maintenance Probe-enabled Traffic Monitoring Vehicle Classification-based Traffic Studies

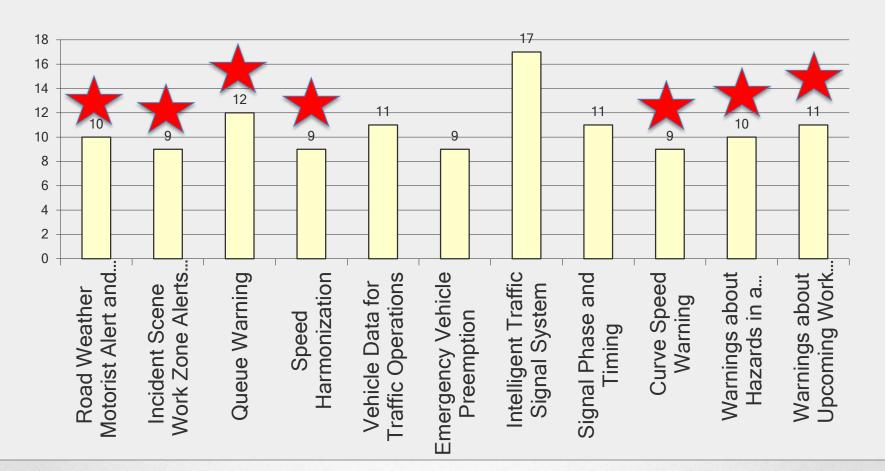
CV-enabled Turning Movement & Intersection Analysis CV-enabled Origin-Destination Studies

CV-enabled Origin-Destination Studies Work Zone Traveler Information


Mobility

Advanced Traveler Information System Intelligent Traffic Signal System (I-SIG) Signal Priority (transit, freight) Mobile Accessible Pedestrian Signal System (PED-SIG) Emergency Vehicle Preemption (PREEMPT) Dynamic Speed Harmonization (SPD-HARM) Queue Warning (Q-WARN) Cooperative Adaptive Cruise Control (CACC) Incident Scene Pre-Arrival Staging Guidance for Emergency Responders (RESP-STG) Incident Scene Work Zone Alerts for Drivers and Workers (INC-ZONE) Emergency Communications and Evacuation (EVAC) Connection Protection (T-CONNECT) Dynamic Transit Operations (T-DISP) Dynamic Ridesharing (D-RIDE) Freight-Specific Dynamic Travel Planning and Performance Drayage Optimization Smart Roadside

Wireless Inspection Smart Truck Parking


DSRC Deployments

Source: Kevin Gay, USDOT and Suzanne Murthy, OmniAir Consortium⁸

CV Applications Included in Agency Proposals and Plans

Question 3: CV Applications Included in Agencies Plans or Proposals for Deployment (Top 11 Applications Selected; # of Responders = 21)

Applications potentially deployable in rural areas

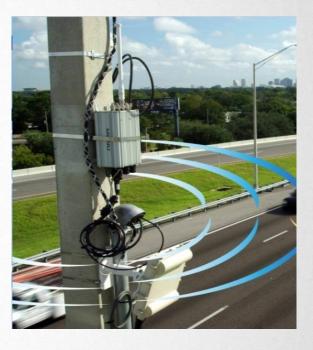
Moving Forward with Connected Vehicles

- What investments could be made to leverage a nationwide fleet of equipped vehicles in support of state and local policy and operational objectives including safety?
- Important issues for state and local agencies:
 - What the deployment decision could mean to you
 - How do you get started?
 - What you need to know to prepare for the emerging connected vehicle environment

Vehicle to Vehicle Communications

NHTSA ISSUES NOTICE OF PROPOSED RULEMAKING AND RESEARCH REPORT ON VEHICLE-TO-VEHICLE COMMUNICATIONS

NHTSA Issued a Notice of Proposed Rule Making (NPRM)

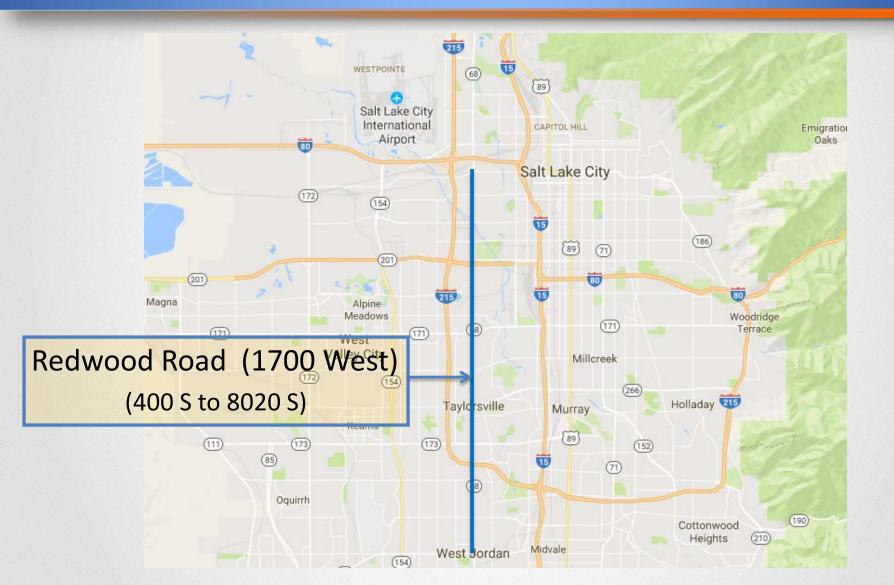

- January 2017
- 90-day Comment Period 400+ comments
- Will require DSRC for V2V in all new light vehicles
- Final Rule Anticipated Late 2019
 - Phase-in Starting Late 2020 (2021 Model Year)

The SPaT Challenge

Challenge state and local public sector transportation Infrastructure Owners & Operators (IO&Os) to deploy DSRC infrastructure with SPaT (and MAP) broadcasts in at least one coordinated corridor or network (approximately 20 signalized intersections) in each state by January 2020.

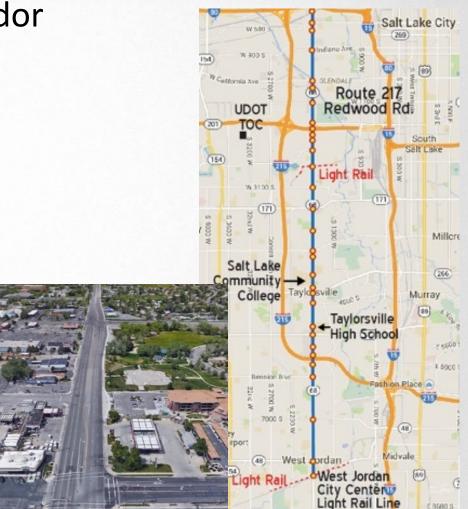
Additional V2I Applications that build on SPaT are also encouraged!

20 Intersections in 50 states by 2020!



SPaT Challenge Resources

Additional Links


Utah DSRC Deployment

Redwood Road DSRC Corridor

11-mile urban arterial corridor

- 35 signalized intersections
- Varies from 5 to 7 lanes
- ADT: 18,000 to 40,000
 - 60,000 peak at I-215
 - Truck Traffic: 24%
- Two light-rail crossings
- UDOT-owned corridor
- Demographic variety
 - Commercial / Retail
 - Residential
 - High School
 - Community College

Redwood Road DSRC Corridor

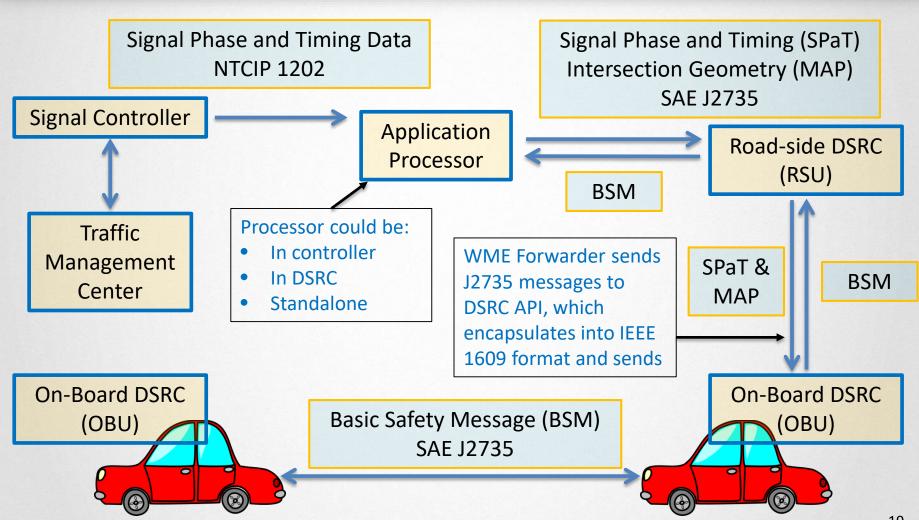
35 signalized intersections

- Full fiber optic connectivity
 - All signals connected to central system
 - Intelight MaxView
 - Running ATSPMs (signal performance metrics)
- Two brands of signal controller:
 - Econolite (Cobalt)
 - Intelight

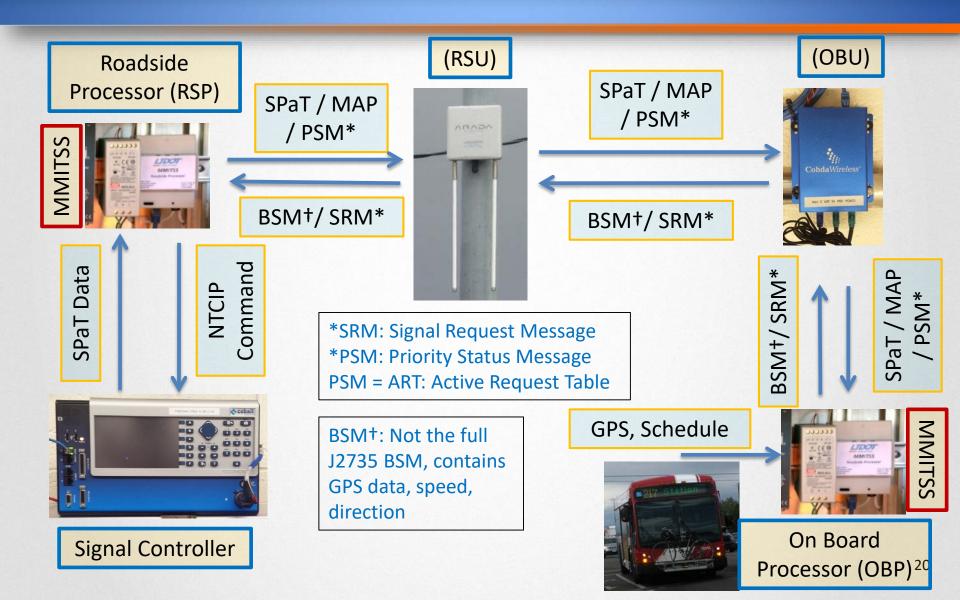
Goals of the Utah Deployment

- Transit Signal Priority for Improved Schedule Reliability
 - UTA Bus Route 217
 - Goal: increase from 86% to 94%
 - Minimal impact to other traffic
- Meet the SPaT Challenge
- Full DSRC Corridor
 - Future testing / deployment
 - Prepare for equipped vehicles

Application Software

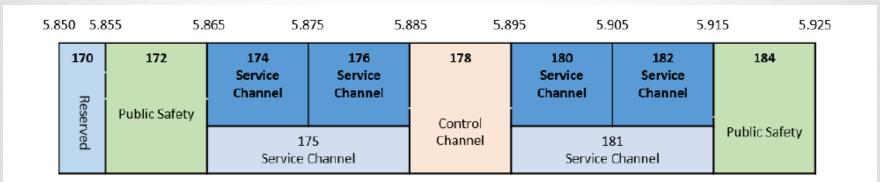

Transit Signal Priority with MMITSS (MMITSS-AZ)

- (Multi-modal Intelligent Traffic Signal System)
- Written by Dr. Larry Head, University of Arizona
 - Funding: CV Pooled Fund Study / FHWA
 - Also deployed in Palo Alto by Caltrans / PATH (MMITSS-CA)
- Balances priority requests from various modes
 - UDOT focus was on transit priority
- MMITSS software modified to:
 - query bus schedule and occupancy
 - operate with multiple DSRC platforms
 - operate within coordinated corridor
 - enable peer-to-peer / extend DSRC range


Traffic analysis will measure system effectiveness & impact

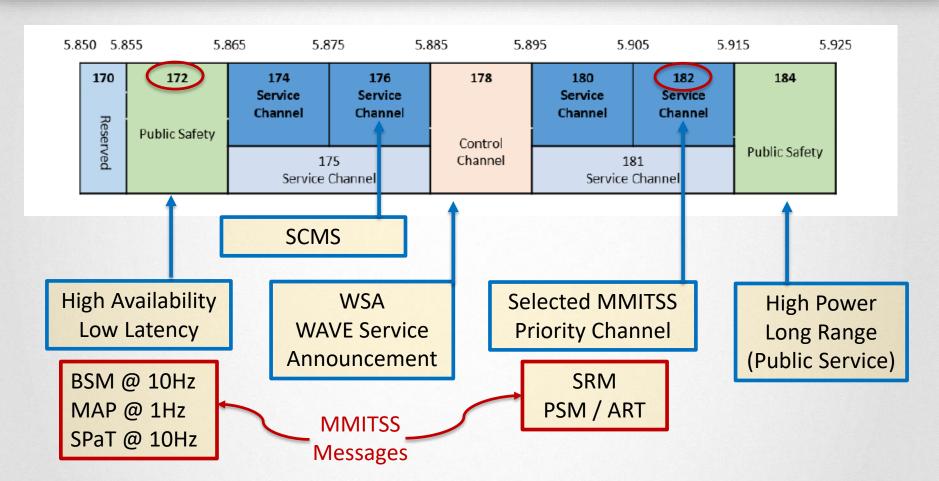
Basic Connected Vehicle Schematic

Utah MMITSS Schematic



DSRC Channels

21


DSRC Band Plan

- 5.850 5.925 GHz spectrum, granted by FCC
- Seven 10-MHz channels / One 5-MHz channel
- Channel 172 & 184 designated for safety of life and property
- Channel 178 designated as a control channel
- Two sets of 10-MHz channels may be combined

Source: FCC Request to Update U-NII Record, FCC 16-68, ET Docket No. 13-49, June 1, 2016

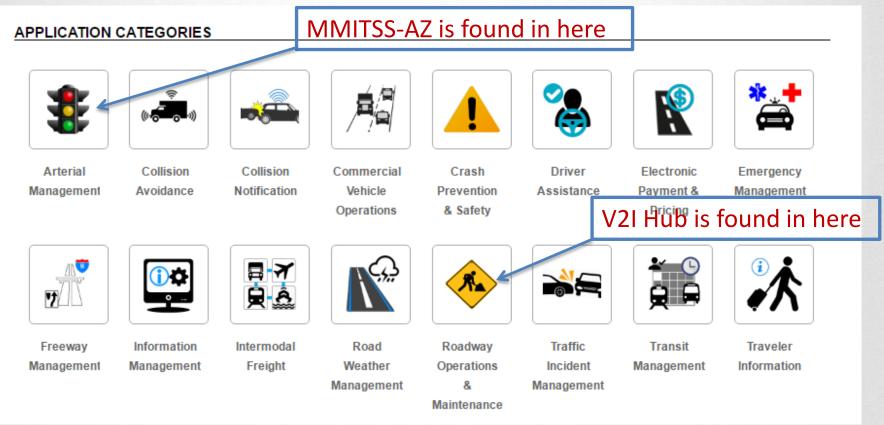
MMITSS Use of DSRC Channels



MMITSS Operation (Simplified)

- Bus comes into range of DSRC at intersection
 - Connects to system
 - Receives SPaT and MAP data
- GPS reports bus location
 - MMITSS determines bus location in lane
- MMITSS queries bus schedule system
 - If bus is late, MMITSS generates request for priority
 - Priority request is sent to roadside
- AZ MMITSS: Algorithm manages signal operation to accommodate bus priority request
- Utah MMITSS: Sends priority request to controller
 - Sends NTCIP command to controller sets input PIN

Getting SPaT Data from the Controller


- Retrieving SPaT data is controller-specific
 - Varied solutions software and hardware (contact vendor)
- V2I Hub is a potential generic solution
 - FHWA Open Source Application Development Portal (OSADP)

https://wwhttps://www.itsforge.net/w.itsforge.net/

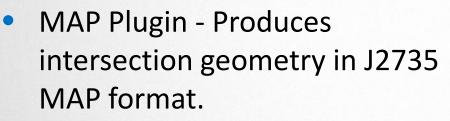
OSADP Application Categories

A variety of FHWA-sponsored open source software available

V2I Hub Tool

V2I Hub

 Message handler that acts as a translator and data aggregator/disseminator for infrastructure components of a connected vehicle deployment.



- Software platform that enables connected vehicles to talk to existing traffic management hardware and systems, such as traffic signal controllers, Transportation Management Centers, pedestrian and vehicle detection systems, road weather sensors, and dynamic message signs.
- Translates communication between different standards and protocols

V2I Hub Tool

V2I Hub

 SPAT Plugin - Communicates with a traffic signal controller (TSC) using NTCIP 1202 v3, and creates a J2735 SPAT Message.

- Works with the following controllers:
 - Econolite ASC/3 (v2.58 or newer) and Cobalt
 - McCain ATC eX
 - Siemens M50

MAP Data File (MMITSS "NMAP" File)

- An ASCII text file which contains intersection map
- data required by MMITSS
- Components of the NMAP File
 - Intersection Information
 - Identification Number

- Intersection Attributes (bit field definitions)
- Reference Point (latitude, longitude)
- Approach Information
 - Number of Approaches in the intersection
 - Approach Type (approach or an egress)
 - Number of traffic lanes in the approach

MAP Data File (MMITSS "NMAP" File)

- Establish points for each lane / element
 - One pair for each lane
 - < 0.5meter accuracy</p>
- Assign attributes for each lane

MAP Data File (MMITSS "NMAP" File)

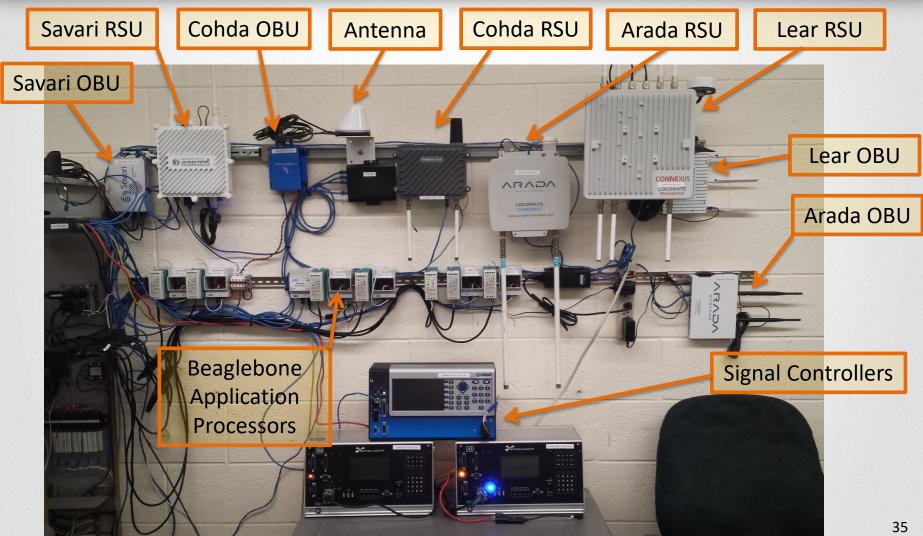
MAP_Name	4610SouthRedwoodRoadReduced.nmap		
RSU_ID	4610SouthRedwoodRoad		
IntersectionID	7605		
Intersection_attri	Intersection_attributes 00110011 /* elevation: Yes, lane width: Yes, Node data 16 bits, node offset solution: cm, geometry: Yes, navigation: Y		
Reference_point	40.6698353	-111.9388660 13110 /* lat, long, elevation (in decimeters) */	
No_Approach	8		
Approach	1		
Approach_type	1	/* 1: approach, 2: egress */	
No_lane	2		
Lane	1.1		
Lane_ID	1		
Lane_type	1 /* 1 to 5, for this intersection all 1: motorized vehicle lane */		
Lane attributes	000000000101010 /* Approach path, straight permitted, right turn permitted, no u-turn, turn on red, */		
Lane width	365 /* in centimeter = 12 feet */		
No_nodes	2		
1.1.1	40.6698529	-111.9386633	
1.1.2	40.6698459	-111.9369704	
No Conn lane	26.1	4 /* Lane 1.1, Straight ahead */	
8.1 3 /* Lane 1.1, Right turn */			
end_lane	, , , ,		
Lane	1.2		
Lane ID	2		
Lane type	1	/* 1 to 5, for this intersection all 1: motorized vehicle lane */	
Lane attributes	000000001010100 /* Approach path, left turn permitted, yield, u-turn allowed, no turn on red */		
Lane_width	305 /* in centimeter = 10 feet */		
No_nodes	2		
1.2.1	40.6698201	-111.9386637	
1.2.2	40.6698190	-111.9384932	
No_Conn_lane	1		
4.3	2 /* Lane 1.2, L	eft Turn */	
end_lane	_ ,,,	A Typical NMAP File	
end approach			
ea_upprouell			

Other (Future) Messages

- Security Credential Management System (SCMS)
 - A unique security credential
 - Authenticate the message
 - SCMS being built for the CV Pilot Projects
 - Estimated availability to the rest of us: Summer 2018
- GPS Correction Factor (RTCM)
 - Might be needed for some applications
 - Provides higher accuracy on GPS coordinates
 - Some "public" sources of this data exist

DSRC Hardware

- Vendors
 - Arada / Lear
 - Cohda
 - Savari
 - Kapsch (on-board only, for the vehicle market)
 - Other new entrants into the market (Wave Mobile, etc.)
- Partnerships being formed to offer turnkey systems:
 - Savari Econolite
 - Wave Mobile Intelight
- Software Development Kit (SDK) needed for any development


DSRC Hardware Procurement

- Standards and Verification
 - RSU Spec 4.0 manufacturers meeting this spec
 - RSU Spec 4.1 been published
 - Adds a "hardware security module" for SCMS
 - Some vendors will provide firmware upgrade to 4.1
 - Support single channel & dual channel alternating DSRC
 - Contain internal computer processing & permanent storage
 - Power-over Ethernet (PoE) that supports IPv4 & IPv6
 - Device certification system being developed

DSRC Hardware Procurement

- No Standard Specification for OBU
 - Some have single DSRC, others have dual DSRC
 - Dual DSRC needed for some applications (MMITSS)
- Procurement Methods & Challenges
 - Government procurement often requires low cost
 - Two-step process allows technical evaluation then cost
 - Research or testing often allows direct purchase

DSRC Hardware

Application Processor

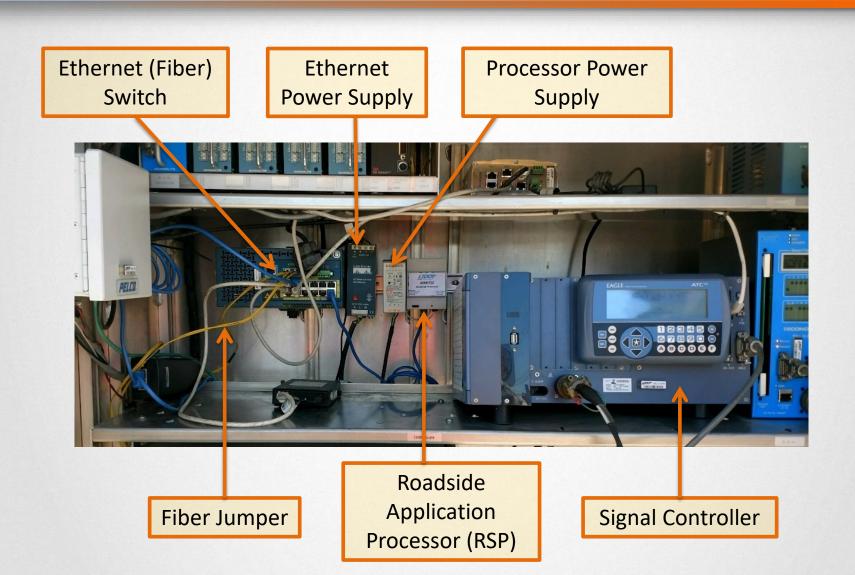
Linux Board

- Some DSRC units don't have sufficient computational power to run applications
- Beaglebone Linux Board
 - Roadside Processor (RSP)
 - On-Board Processor (OBP)
 - 1GHz CPU with 4GB flash memory
- Mounted in protective case
- Power Supply

Redwood Road Installation

DSRC Hardware

- Equip 30 of 35 Intersections with RSU
 - Skip two freeway interchanges
 - Skip reversible-lane cross-street
- Equip buses with OBU (currently Cohda)
- Deployed three (four?) brands of DSRC
 - Did this to verify and test interoperability
 - Arada (purchased by Lear)
 - Lear
 - Savari
 - Cohda


Redwood Road Installation

- RSU mounted on signal pole, mast arm, luminaire pole
 - Omni-directional antenna, but obstructions can impair signal
 - 300 meter range (nominal)
- Ethernet cable to cabinet

Signal Cabinet Installation

DSRC Licensing

- Entity must have a "geographic DSRC license" from FCC
- NTIA has transmitters operating in this band in isolated locations
- Individual DSRC RSU sites must be "registered" with FCC
 - Device brand and model
 - Location of deployment (coordinates)
 - Antenna specifications
 - No license fee
 - FCC DSRC Service website: <u>http://wireless.fcc.gov/services/index.htm?job=licensing&id=dedicated_src</u>
- Many DOTs have person who oversees wireless systems
- On-Board DSRC does not need to be registered

On-Board Installation

- Installed in electronics cabinet behind driver
- Equipment:
 - DSRC OBU (curently Cohda)
 - "Beaglebone" On-board Processor (OBP) (Mounted on pin-rail)
 - Power Supply
 - Antenna (roof of bus) (DSRC and GPS)

Project Costs

- Hardware
 - RSU \$1200 \$3300 each \$73,000
 OBU \$900 \$1500 each \$22,000
 Beaglebone \$105 each (w/enclosure) \$3,700
 Misc Hardware (brackets, cables, SDK, shipping) \$15,000
 Total Hardware Costs: \$113,700
- Installation / Integration /Coordination (including testing, verification, etc.)

\$153,600

Project Evaluation / Assessment

\$104,000

Project Costs

Software

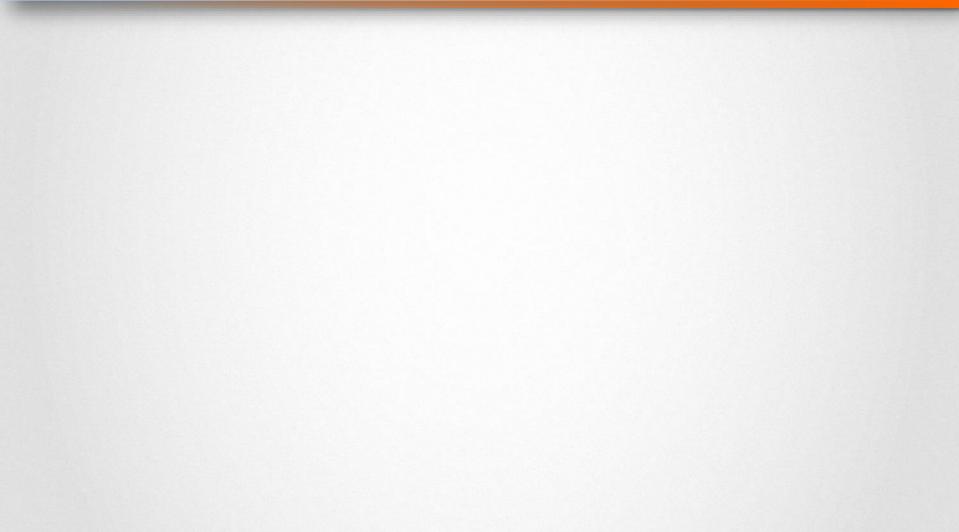
- Modifications to MMITSS
- Peer to Peer Feature
- Hardware Interoperability
- User Interface

Total Software Costs:

\$178,000 \$104,000 \$118,000 \$ 59,000 \$459,000


• Grand Total:

\$<u>830,300</u>


Note: Internal costs not shown

And, we aren't done yet!

User Interfaces

Utah MMITSS System Demonstration

Challenges: General

- This is an emerging market
 - The hardware is still immature
 - Hardware specifications are changing
 - Interoperability is difficult (particularly with applications)
 - Integration with controllers and systems (incl. SPaT data)
 - Hardware idiosyncrasies
 - There are very few "off the shelf" applications
 - Research to operations is a big leap
 - Agencies (and consultants) have limited technical "bandwidth"
- Many applications need significant market penetration
 - NHTSA NPRM on V2V is crucial

Challenges

- Modifying code written by others is difficult
 - Prototype code not well documented
 - MMITSS messages weren't standard messages
 - Segmentation faults in code
 - Data logging had to be altered to fit within available storage
- Variations between Vendors
 - Wmefwd needed to be modified / written for each platform
 - Crucial to sending standardized data packets or NOT?
 - GPS data is handled differently results in altered locations
 - Speed units were different
- Antenna types vary

Recommendations

- Start Small and Scale Up
 - The best way to learn is to "just do it"
 - SPaT Challenge
 - The time to deploy is now: it isn't perfect, but it won't be until we deploy and test
- Work Together / Share Experience
 - There is strength in numbers
 - Systems need to cross borders (Interoperability)
- Don't expect it to be easy

Resources

- SPaT Challenge web site (Nat'l Ops Center of Excellence)
 - www.transportationops.org/spatchallenge
 - Lots of good resource documents
- V2I Deployment Coalition
 - Joint effort of AASHTO, ITS-America, ITE
- AASHTO Connected & Automated Vehicle Working Grp
- ITS-America Connected Vehicle Task Force
- ITE Connected Vehicle Task Force
- Caltrans: Greg Larson
 - Headquarters Div of Traffic Ops

QUESTIONS / DISCUSSION

