Radar Technology for Distinguishing Between Bicycles and Cars

California Department of Transportation

Martha Styer, P.E. Martha.Styer@dot.ca.gov

Senior Transportation Electrical Engineer HQ Division of Traffic Operations

John Slonaker, P.E. John.Slonaker@dot.ca.gov

Senior Transportation Electrical Engineer
HQ Div. of Research, Innovation \& System Integration

Radar Technology to Distinguish Bike/Car

Special Appreciation:

Caltrans D12 Electrical Engineers:
Sammun Seik Ismail, Kelvin Nguyen, Peter Ngo, Pauline Nguyen, and Fedrico Hormozi, P.E.
Larry Vietti, D12 Maintenance Superintendent
Edgar Jamison, Wayne Vierra, and Vu Nguyen - D12 Maintenance Chris Seale, D3 Maintenance Manager

Kai Leung, P.E. - Caltrans HQ Traffic Operations
Michael Beck - T.S. Detection
Joe Palen, P.E. - retired Caltrans Engineer

Daniel Hale \& Elliot Hawkins - Caltrans Student Assistants

Radar Technology to Distinguish Bike/Car

The Issue: Caltrans must provide minimum bicycle timing (per CA MUTCD 4D-109 (CA)).

- If no detection exists, the required additional bicycle timing may impede traffic flows if there are no bicycles present. \rightarrow Inefficient (resulting in increased vehicle delays, greenhouse gas emissions, fuel costs, etc.)
- Type D inductive loop detectors can detect bicycles but can't distinguish between bicycles and cars/trucks. Therefore, there still may be too much green time when not needed \rightarrow Inefficient
- The ability to distinguish between bicycles and cars/trucks enables more efficient traffic signal timing so that the minimum bicycle timing is provided ONLY IF a bicycle is present. \rightarrow More efficient
$\mathrm{G}_{\text {min }}+\mathrm{Y}+\mathrm{R}_{\text {clear }} \geq 6 \mathrm{sec}+(\mathrm{w}+6 \mathrm{ft}) / 14.7 \mathrm{ft} / \mathrm{sec}$, where
$\mathrm{G}_{\text {min }}=$ Length of minimum green interval (sec)
$\mathrm{Y}=$ Length of yellow interval (sec)
$\mathrm{R}_{\text {clear }}=$ Length of red clearance interval (sec)
W = Distance from limit line to far side of last conflicting lane (ft)

California MUTCD (Manual for Uniform Traffic Control Devices)

Distance from limit line to far side of last conflicting lane	Minimum phase length (minimum green plus yellow plus red clearance)
Feet	Seconds
40	9.1
50	9.8
60	10.5
70	11.2
80	11.9
90	12.5
100	13.2
110	13.9
120	14.6
130	15.3
140	15.9
150	16.6
160	17.3
170	18.0
180	18.7

Radar Technology to Distinguish Bike/Car

Limitations of Type D loop detector for Bicycle Detection:

- Can't distinguish between cars and bikes
- False calls (FP) due to "splash-over" from adjacent lane (bus) when bus or right-turning car crosses into a bike lane

Limitations of any Inductive Loop Detector for Detection:

- In-pavement, requires lane closures
\rightarrow impedes traffic, increases delay
- In-pavement, wears with the roadway deterioration
- More risk (exposure to traffic) to Maintenance staff
- Inability to directly measure vehicle speeds

Radar Technology to Distinguish Bike/Car

Currently Caltrans requires limit line detection to be replaced with Type D inductive loop detectors if at least 50% of an intersection is being modified. Although this complies with the law (CVC* 21450.5), it does not aid in efficient signal timing.

Caltrans began to evaluate the MS Sedco Intersector radar detector in 2012. The study resulted in 3 phases:

1. Comparison with Inductive Loop Detector Data in city of Chico over several months. Statistical analysis done to document accuracy.
2. Installed in city of West Sacramento, to run a signalized intersection using radar detectors exclusively (disconnected loops) for a few hours.
3. Permanently installed in city of Huntington Beach to actuate a signalized intersection where there are bicycles known for violating red traffic signal.

Caltrans Chico Bike Detection Test Location
(see poster for better view)

NOTES LDNOTES MOELTO CONTROLLER AN
OUNDATION DETAL SEE ES-4B
 NLI DIRECT CYCLISTS. SIGN TO NaNO SIGN TOBE INSTALLED TO

IE WTH R 49 SIGN TOBE INSTALLEO (TYPE I).
S-5FOF STANIARD PLANS

PERMITTED PHASES

Chico, California, approx. ~1mile from Chico State University

Intersector radar units installed on the NB traffic signal mast arm (at 18'), and SB traffic signal pole shaft (at $16^{\prime} 6^{\prime \prime}$).

Video cameras also installed.

Caltrans West Sacramento Bike Detection Test Location

Location ~1 mile from State Capitol. High bike commuters from city of Davis.
(see poster for better view)

Radar Technology to Distinguish Bike/Car

The Radar Technology (MS Sedco Intersector)
Weight: 5 lbs
Size: $11^{\prime \prime} \times 8.5^{\prime \prime} \times 7$ " (L x W x H)
Detection range: 50^{\prime} min -425^{\prime} max (latest version 600')
Frequency: 24.75 GHz 4 outputs (8 zones max)
Cost: < \$5K each (\sim \$19K for 4-leg intersection)

- >42 States currently using INTERSECTOR
- Almost 3,000 units deployed in USA, >300 in California ($\sim 50 \%$ use for bicycles)
- Not affected by weather, nor sun glare

TC-CK1-SBE Motion and Presence Sensor

Note: Average cost of Inductive Loop Detector System for 4-approach, 2-lane highway (+ 1 left-turn lane) is $\mathbf{\$ \$ 6 0 K}$. (per District 3) Cost of installing off-pavement detection (such as radar) is $\sim \$ 34 \mathrm{~K}$.

Radar Technology to Distinguish Bike/Car

Definition of Successful Bike Detection

- Although detection must be for just a 6'x6' zone, we have chosen to make radar detection zone width of bike lane and thru-lanes and varying depth (to 105 ' from the stopbar/limit line).
- Successful bike detection is during a red interval (bike waiting for green interval) so that additional green (minimum bicycle timing) may be given for bikes;
\rightarrow Missing a bike during a green interval is NOT an issue.

CONSENSUS FROM BICYCLE COMMUNITY

Criteria for Bike Detection: Any cyclist crossing bike zone during Red or Yellow interval, slowing down ($<5 \mathrm{mph}$, intent is to stop), we want to detect

If cyclist turns Right, cyclist does not plan to stop; doesn't slow down much
\rightarrow Don't serve
Location for Cyclist Detection: Bike lanes, as well as Through-lanes and Left-turn lanes

Radar Technology to Distinguish Bike/Car

Cultrans'

Chico Results Summary

All data (Loop detector and Radar) recorded using the LOG170 software using a Model 170 Controller. (big, cumbersome) Detection data (loop \& radar) and video recorded:

December 2012 (2 weeks; 7 one-hour blocks analyzed in great detail),
April 2013 (3 weeks; 5 one-hour blocks analyzed)
May 2013 (1 week; a one-hour block analyzed)
June 2013 (1 week; 2 one-hour blocks analyzed).
Analyzed hours of data chosen based on bike volumes or Time of Day.

Highest hourly bike volume: ~ 30.
Based on conservative "ground truth" values of vehicle volumes Vehicle Presence Detection ~99-100\% accurate.

Bicycle presence detection ~95-97\% accurate.

Radar Technology to Distinguish Bike/Car

West Sacramento Results Summary

All data (Loop detector and Radar) initially recorded using the LOG170 software using a Model 170 Controller. Data later recorded using the C1 Reader (much smaller) that can record ALL data (inputs/outputs).

Detection data (loop \& radar) and video recorded:
February 2015 (1 three-hour block analyzed in great detail),
March 2015 (3 three-hour block analyzed)
June 2015 (1 two-hour block analyzed analyzed).
September 2015 (1 hour block analyzed analyzed).
Analyzed hours of data chosen based on Bike Volumes or Time of Day.
Average hourly bike volume: ~16-28.
Based on conservative "ground truth" values of vehicle volumes
Bicycle presence detection 87-100\% accurate.
Results: $90-100 \%$ in the EB/WB direction, and $86-100 \%$ in the NB/SB direction.

Therefore, error (bikes missed during Red): $0-14 \%$ ($0-10 \%$ in EB/WB and $0-14 \%$ in NB/SB)
Time Savings: Assuming no congestion or bikes \& no demand in left-turn: $\sim 20 \%$ ($4.8 \mathrm{sec} / \mathrm{cycle}) \rightarrow 11.5 \mathrm{~min} / \mathrm{hour}$

Radar Technology to Distinguish Bike/Car

West Sacramento Results

Some bicyclists may exceed top speed threshold of radar definition for bicyclist (30km/hr $=18.6 \mathrm{mph}$) December 2014 data indicated several high-speed bicyclists that were "missed" by the radar but detected as CARS.
$\rightarrow \rightarrow$ Misclassified bicyclists as cars. These cyclists may not need the additional bike green time.

Manufacturer was contacted regarding a user-settable threshold (>18.6mph) so that these fast cyclists may be properly detected as bikes. Manufacturer agreed to modify radar unit with threshold set to 21 mph (if desired).

Some bicyclists are initially detected but then "lost" (dropped) because rather than stopping at red traffic signal, bicyclist moves completely into crosswalk. A large percentage of cyclists continue to ride in circles, but are no longer in the "bike zone" or they run through the red signal.
*Need awareness that the law is "to detect lawful bicycle or motorcycle traffic on the roadway."

Some bicycles detected but then occluded by large vehicles.
Further investigation of Occlusion Zone Protection (OZP and DBM).

Radar Technology to Distinguish Bike/Car

Caltrans:

West Sacramento Radar and Inductive Loop Detection Study

* Treating bikes properly by the signal means detecting them during the Red phase and providing bike extended time.

$\begin{gathered} \text { Tues. June } 9 \\ \text { NB } \\ \text { (9am-10am) } \end{gathered}$	Radar Bike Detections	Average Bike Vol per hour	Radar Missed Bikes during Red	Radar: Missed Bikes during Green	Total Bikes	Radar: FP during Red	Radar: FP during Green	Radar: \% bikes detected	Radar ACCURACY \% bikes that would have been treated properly by the signal *	Radar \% bikes MISSED	Radar: ERROR \% bikes MISSED during RED	
NB Thru	60	60	1	1	62	13	8	96.8\%	98.4\%	3.2\%	1.6\%	61.9\%
NB Left-Turn	30	30	0	0	30	3	0	100.0\%	100.0\%	0.0\%	0.0\%	100.0\%
$\begin{gathered} \text { Tues. June } 9 \\ \text { SB } \\ \text { (9am-10am) } \end{gathered}$	Radar Bike Detections	Average Bike Vol per hour	Radar Missed Bikes during Red	Radar: Missed Bikes during Green	Total Bikes	Radar: FP during Red	Radar: FP during Green	Radar: \% bikes detected	Radar ACCURACY \% bikes that would have been treated properly by the signal *	Radar \% bikes MISSED	Radar ERROR \% bikes MISSED during RED	
SB Thru	55	55	1	1	57	10	10	96.5\%	98.2\%	3.5\%	1.8\%	50.0\%
SB Left-Turn	0	0	11	1	12	0	0	0.0\%	0.0\%	100.0\%	100.0\%	0.0\%

* Treating bikes properly by the signal means detecting them during the Red phase and providing bike extended time.

7/26/2017

DATE (EB \& WB combined) Fri. FEB. 27	Radar Bike Detections	Average Bike Vol per hour	Radar Missed Bikes during Red	Radar: Missed Bikes during Green	Total Bikes	Radar: FP during Red	Radar: FP during Green	Radar: \% bikes detected	Radar ACCURACY \%bikes that would have been treated properly by the signal*	Radar \% bikes MISSED	Radar: ERROR \% bikes MISSED during RED	FP\% during RED
WB 15:00	15	5	0	0	15	0	0	100.0\%	100.0\%	0.0\%	0.0\%	0.0\%
EB 15:00	9	3.0	1	0	10	0	0	90.0\%	90.0\%	10.0\%	10.0\%	0.0\%
WB 16:00	18	6	2	1	21	0	0	85.7\%	90.0\%	14.3\%	10.0\%	0.0\%
EB 16:00	15	5	1	0	16	0	0	93.8\%	93.8\%	6.3\%	6.3\%	0.0\%
WB 17:00	15	5	0	1	16	0	0	93.8\%	100.0\%	6.3\%	0.0\%	0.0\%
EB 17:00	1	0.3333	0	0	1	0	0	100.0\%	100.0\%	0.0\%	0.0\%	0.0\%
DATE (EB \& WB combined) Fri. FEB. 27	LOOP Bike Detections	Average Bike Vol per hour	Loop Missed Bikes during Red	Loop: Missed Bikes during Green	Total Bikes	Loop: FP during Red	Loop: FP during Green		Loop ACCURACY \%bikes that would have been treated properly by the signal*	Loop \% bikes MISSED	Loop ERROR \% bikes MISSED during RED	FP\% during RED
WB 15:00	13	4.3	2	0	15	0	1	86.7\%	86.7\%	13.3\%	13.3\%	0.0\%
EB 15:00	9	3.0	1	0	10	0	0	90.0\%	90.0\%	10.0\%	10.0\%	0.0\%
WB 16:00	19	6.3	0	2	21	0	0	90.5\%	100.0\%	9.5\%	0.0\%	0.0\%
EB 16:00	13	4.3	1	2	16	0	0	81.3\%	92.9\%	18.8\%	7.1\%	0.0\%
WB 17:00	15	5.0	0	1	16	0	0	93.8\%	100.0\%	6.3\%	0.0\%	0.0\%
EB 17:00	1	0.3	0	0	1	0	0	100.0\%	100.0\%	0.0\%	0.0\%	0.0\%
DATE (EB \& WB combined 3pm-6pm)	Radar Bike Detections	Average Bike Vol per hour	Radar Missed Bikes during Red	Radar: Missed Bikes during Green	Total Bikes	Radar: FP during Red	Radar: FP during Green	Radar: \% bikes detected	Radar ACCURACY \%bikes that would have been treated properly by the signal*	Radar \% bikes MISSED	Radar: ERROR \% bikes MISSED during RED	FP\% during RED
Fri. March 13	81	27	1	5	87	29	71	93.1\%	98.8\%	6.9\%	1.2\%	29.0\%
Mon. March 16	85	28.3	1	8	97	9	39	87.6\%	98.8\%	9.3\%	1.2\%	18.8\%
Tues. March 17	48	16	2	4	54	6	88	88.9\%	96.0\%	11.1\%	4.0\%	6.4\%

West Sacramento Radar and Inductive Loop Detection Study

* Treating bikes properly by the signal means detecting them during the Red phase and providing bike extended time.

DATE (EB \& WB combined 3pm-6pm)	LOOP Bike Detections	Average Bike Vol per hour	Loop Missed Bikes during Red	Loop: Missed Bikes during Green	Total Bikes	Loop: FP during Red	Loop: FP during Green	Loop: \% bikes detected	Loop ACCURACY \%bikes that would have been treated properly by the signal*	Loop \% bikes MISSED	Loop ERROR \% bikes MISSED during RED	$\begin{gathered} \text { FP\% } \\ \text { during } \\ \text { RED } \end{gathered}$
Fri. March 13	80	26.7	3	1	87	7	41	92.0\%	96.4\%	4.6\%	3.6\%	14.6\%
Mon. March 16	79	26.3	1	2	97	5	29	81.4\%	98.8\%	3.1\%	1.3\%	14.7\%
Tues. March 17	46	15.333	2	6	54	7	67	85.2\%	95.8\%	14.8\%	4.2\%	9.5\%
DATE ($N B$ or SB) Tues. June 9	Radar Bike Detections	Average Bike Vol per hour	Radar Missed Bikes during Red	Radar: Missed Bikes during Green	Total Bikes	Radar: FP during Red	Radar: FP during Green	Radar: \% bikes detected	Radar ACCURACY \%bikes that would have been treated properly by the signal*	Radar \% bikes MISSED	$\begin{aligned} & \text { Radar } \\ & \text { ERROR \% } \\ & \text { bikes } \\ & \text { MISSED } \\ & \text { during RED } \end{aligned}$	$\begin{gathered} \text { FP\% } \\ \text { during } \\ \text { RED } \end{gathered}$
9-10am NB Thru	60	60	1	1	62	13	8	96.8\%	98.4\%	3.2\%	1.6\%	61.9\%
9-10am NB Left-Turn	30	30	0		30	3	0	100.0\%	100.0\%	0.0\%	0.0\%	100.0\%
9-10am SB Thru	55	55	1	1	57	10	10	96.5\%	98.2\%	3.5\%	1.8\%	50.0\%
9-10am SB Left-Turn	0	0	11	1	12	0	0	0.0\%	0.0\%	100.0\%	100.0\%	0.0\%
NB 10-11am	22	11.0	2	1	25	17	6	88.0\%	91.7\%	12.0\%	8.3\%	73.9\%
SB 10-11am	18	9.0	3	2	23	27	8	78.3\%	85.7\%	21.7\%	14.3\%	77.1\%
NB \& SB 10-11 combined	40	20.0	5	3	48	44	14	83.3\%	88.9\%	16.7\%	11.1\%	75.9\%
DATE (Time)	Radar Bike Detections (Actual Bikes)	Average Bike Vol per hour	Radar Missed Bikes during Red	Radar: Missed Bikes during Green	Total Bikes	Radar: FP during Red	Radar: FP during Green	Radar: \% bikes detected	Radar ACCURACY \%bikes that would have been treated properly by the signal*	Radar \% bikes MISSED	$\begin{aligned} & \text { Radar: } \\ & \text { ERROR \% } \\ & \text { bikes } \\ & \text { MISSED } \\ & \text { during RED } \end{aligned}$	$\begin{aligned} & \text { FP\% } \\ & \text { during } \\ & \text { RED } \end{aligned}$
Mon. Sept 21 SB (9:15-9:25am)	13	N/A	0	0	18	2	2	100.0\%	100.0\%	0.0\%	0.0\%	10.0\%
Mon. Sept 21 SB (9:30-9:40am)	17	N/A	0	0	24	6	0	100.0\%	100.0\%	0.0\%	0.0\%	20.0\%

Radar Technology to Distinguish Bike/Car
West Sacramento

Radar Technology to Distinguish Bike/Car

OCCLUSION

Occlusion may be a problem with Radar. Large vehicles may block "view" of radar detector. Solution: Mount radar detector at higher level and/or use the OZP (Occlusion Zone Protection) and DBM (Delay Before Max) feature available.

This feature was extensively tested at a Caltrans Maintenance yard (formerly McClellan AFB).

Pole was lowered and mounting height of radar detector raised to 20 feet

Occluding Vehicle: Total Length approx. 50' x Total Height approx. 13'

Radar Technology to Distinguish Bike/Car

OCCLUSION (con't.)

The Radar unit was installed at various heights to verify features: Occlusion Zone Protection (OZP) and Delay Before Max (DBM).

Both the OZP and DBM are important to "protect" a bicycle if it has been detected by the radar but then is blocked (occluded).

The option of using "Red Lock" has been used by many signalized intersections in the USA but is not an ideal solution since the blocked vehicle may leave the area (such as a bicycle or car turning right), thereby potentially placing an unnecessary call to the controller.

Bicyclist may be seen in gap between back of truck and trailer

Sequence of approaching bicyclist under Saturation Conditions

Radar Technology to Distinguish Bike/Car

Cultrans:

OCCLUSION (con't.)

Occlusion of truck while bicycle approaches limit line (photo on left side) and occlusion immediately removed (truck drives straight through, photo on right side).

Radar Technology to Distinguish Bike/Car

C1 READER

The C1 Traffic Detector Reader and Analyzer: Inexpensive tool developed by Caltrans DRISI to diagnose (\& troubleshoot) vehicle detector problems while they are online and reporting data to the TMC. Tool to collect 100% of the real-time data flowing between traffic controllers and controller cabinets and then validate by comparing to video ground truth.

7/26/2017

Electronic circuit: Samples all logic signals flowing in and out of a controller via a flex cable, makes individual contacts with each C1 connector pin (104). Data is stored by a Raspberry Pi microcontroller, transmits to local USB thumb drive and/or web server program via TCP/IP.

Components: Mounted in environmental enclosure, includes female C1 connector which plugs into standard male C1 connector from cabinet. Assembly plugs into the controller via another standard C1 connector. Installation transparent to controller and cabinet.

Analyze captured data: VideoSync displays ground truth video alongside graphical representation of logic C 1 pin signals.

Radar Technology to Distinguish Bike/Car

C1 READER

The C1 Reader collects the sensor data and transmits it to the VideoSync program.

Recorded video is synchronized with captured data and VideoSync displays ground truth video with graphical representation of logic signals on selected C1 pins.

False detections (false positives), missed detections (false negatives), double counts and other errors reported by detectors are readily visible.

VideoSync software may be used to analyze data and generate statistics on the accuracy of any vehicle detector under test.

The combination of recorded video and detector data may be used to verify and validate proper installation of vehicle detection systems.

Radar Technology to Distinguish Bike/Car

C1 Reader ver. B5.1 Schematic Diagram

Radar Technology to Distinguish Bike/Car

Caltrans:

C1 Reader ver. B5.1 Schematic Diagram

Radar Technology to Distinguish Bike/Car

C1 READER SPECIFICATIONS

How much does a unit cost?
Since the C1 Reader is an engineering prototype, the cost is understandably high: \$145 each for C1 Reader fabrication, includes printed circuit board, components, and populating. Most of the components are surface mounted, which requires precision machine.

How do you get one? The C1 Reader is currently not being mass produced. It is a working engineering prototype, manually assembled: requires soldering 104 pins to the connector, installing the cooling fan, Raspberry Pi, Ethernet hub, etc.
All the subassemblies are installed inside a 6 " $\times 66^{\prime \prime} \times 4$ " box.

Functional Specifications: Read all the C1 pins and make the data available via Ethernet or via a flash drive;
be small enough to be mounted in a small $6 " \times 6 " x 4 "$ box and placed inside the traffic controller cabinet.

- The C1 Reader reads all 100 active pins in read-only mode.
- The high-impedance inputs of the C1 Reader ensures that it does not interfere with the traffic controller's operation.
- Additionally, can read from 2 external 20 and 24 pin headers, that may be connected directly to back terminals of the Input File, hooked into to the 2070's auxiliary C11 connector, or used to read external I/O not connected directly to the cabinet (such as an experimental detector).

The current objective is to build and test enough of them so that Caltrans knows specifically what functions are needed for which end-use applications.

Radar Technology to Distinguish Bike/Car

Huntington Beach Results

All data recorded using the C1 READER.
System was installed in October 2016. Video and radar data were recorded and analyzed. Several issues were discovered and so the system was modified in February 2017, video and radar data were again recorded.

C1 READER

Front side of Controller Cabinet
(see C1 Reader on top of 2070 controller)

Radar Technology to Distinguish Bike/Car

Huntington Beach Results

A sign was created and posted on each leg of the intersection to hopefully educate and modify bicyclist behavior (increase compliance to red traffic signal).

Mounting Height $=24^{\prime}$

ENGLISH UNITS (inches)

A	B	C	D	E	F	G	H	J
36	24	.625	.94	2.50	10	1.5	$3 C$	2.25

Radar Technology to Distinguish Bike/Car

Huntington Beach Results

In order to have "real" bicycle data, the bicyclist community was invited to participate on Thursday, February 23, 2017.
The owner of "CycleGuy.com" invited participation.

The response was very positive.
$f *=$

CYCCLSTT the shop ebikes bullo yourb bike service event calendar contact fand the crais

PREVIOUS EVENTS

REVOLUTIONARY BICYCLE

 SAFETY TECHNOLOGY!please join us, on the final testing of this revolutionary Bicyde safety technology The Cyclist Bike Shop and Cailtrans (California Department of Transportation) are that will recognize bikes and triggers stoplights along the coast of Califormiot detalls

Start: 10:00 a.m.
Ocation: 1785 Newoort Blvd, Costa Mesa, California 92627

REVOLUTIONARY BICYCLE SAFETY TECHNOLOGY

DETAILS
Date: Thursday, February 23, 2017
rt: 10 a.m.
ation: 1785 Newport Blvd, Costa Mesa, California

Revolutionary Bicycle Safety technology!
The Cyclist Bike Shop and CalTrans (California Department of Transportation) are
teaming up on the final testing faze of this revolutionary bicycle sensing radar that will ecognize bikes and trigger stoplights along the coast of California. The final testing will be done from 10 am until 3 pm on Thursday, February 23rd, a group will be leaving fro The Cyclist Bike Shop in Costa Mesa at 10 am proceeding to PCH via Superior Blvd, and raveling North to the intersection of PCH and Goldenwest.

The group will meet at the intersection of PCH and Goldenwest to perform the first of multiple tests. The Cyclist Bike Shop will have a tent with complimentary water and shade during the testing.
Once testing is complete, an optional group ride will proceed North, turning around at Warner avenue, making for a 24 mile round-trip spin up our local Pacific Coast Highway.
If you can't meet us at the shop please bring as many friends with any type of bike to the intersection of PCH and Goldenwest between 10 AM until 3 PM

Please join us, on the final testing of this revolutionary Bicycle safety technology!

Radar Technology to Distinguish Bike/Car
Huntington Beach Results

Positive response to public outreach

Radar Technology to Distinguish Bike/Car
Huntington Beach Results

Radar Technology to Distinguish Bike/Car

Cultrans:

Huntington Beach Results

Radar Technology to Distinguish Bike/Car

Huntington Beach Results

Cars/Truck Vehicle
Detector zones shown on top of bicycle (purple) detection zones

Radar Technology to Distinguish Bike/Car

Huntington Beach Results

Simplified demonstration of VideoSync SET-UP, displaying Right-turn car movement video along with radar detection pulses.

Radar Technology to Distinguish Bike/Car Huntington Beach Results

00:51:11.216

Radar Technology to Distinguish Bike/Car Huntington Beach Results

Radar Technology to Distinguish Bike/Car

Huntington Beach Results

Modifications made because of October data analysis:

1. Left-turn Bike Zone widened by 2 feet (into through-lane)
2. Northbound Bike Zone extended out by 20 feet (past limit line): no crosswalk
3. Increased size/speed of Ethernet switch (to properly record all 4-legs simultaneously)

Setting of DBM = 110 sec and OZP = 20 seconds

More Video Clips of February $24^{\text {th }}$, along with Radar data shown through VideoSync (show group of bicyclists)

Radar Technology to Distinguish Bike/Car

False Negative: Missed Bike (not detected)

Motorized Bike may exceed threshold; group of bicycles detected as car (misclassified)

Radar Technology to Distinguish Bike/Car

Huntington Beach Results

Data Analysis \& Results

- Overall accuracy for detecting cars/trucks 100\%;
- Overall accuracy for detecting bicycles potentially ~99\% if includes bikes detected but misclassified as cars); ~93\% if include misclassifications
- A group of >1 bicycle traveling very closely together may appear as a car to the radar detector.
- Bicycles that exceed 30km/hr (18.6 mph) will be misclassified as cars.
- Very important to verify/validate after installation, for better setting of detection zones

Radar Technology to Distinguish Bike/Car
Huntington Beach Results
February 23, 2017

Total Bicycle Events (pulses) from 12:30pm to 4:30pm										Green FP	
Phase	Total: $T P+F N$	Legal Detections	Servicable Detections*	Total TP	Total FN	Green FN	Red FN	Legal Red FN	Total FP		Red FP
1	5	5	5	5	0	0	0	0	43	35	8
2	35	34	33	31	4	1	3	2	44	35	9
3	38	38	38	37	1	0	1	1	6	2	4
4	53	53	52	40	13	1	12	12	39	26	13
5	19	19	19	16	3	0	3	3	8	5	3
6	29	28	17	15	14	11	3	2	48	39	9
Totals	179	177	164	144	35	13	22	20	188	142	46
									Miscla	d and/c	antoms

Hourly Bike Pulse Counts

Hourly Bike Pulse Counts										Serviceable Detections*: Legally niding bikes that slow down with intent to stop and wat for green signal (TP + Legal Red FN)
	Ground Truth	Hourly TP	Hourly FN	Green FN	Red FN	Legal Red FN	Hourly FP	Green FP	Red FP	
12:30pm to 1:30pm	39	33	8	2	6	6	57	43	14	
1:30pm to $2: 30 \mathrm{pm}$	66	56	14	4	10	10	35	25	10	
$2: 30 \mathrm{pm}$ to $3: 30 \mathrm{pm}$	53	49	9	4	5	4	50	40	10	
$3: 30 \mathrm{pm}$ to $4: 30 \mathrm{pm}$	6	6	4	3	1	0	46	34	12	
Totals	164	144	35	13	22	20	188	142	46	

Vehicle Volume Per Hour and Per Phase

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6

12:30pm to 1:30pm	33	91	19	58	18	165	384
1:30pm to 2:30pm	23	85	28	36	9	131	312
$2: 30 \mathrm{pm}$ to 3:30pm	33	80	33	46	17	195	404
3:30pm to 4:30pm	34	115	17	47	18	199	430
Totals	123	371	97	187	62	690	1,530

Ground Truth: Total number of events Legal Detections: Total number of events capturing legal behavior (TP + Green FN + Legal Red FN)
TP. True Positive Bike is correctly detected
FN: False Negative Missed Bike (not detected) Detected a bike, but no bike present(phantoms) Missed Bike during Red phase Legally-abiding bicyclist not detected

Serviceable Detections: Total number of events where a bike should be serviced (TP + Legal Red FN)

Radar Technology to Distinguish Bike/Car Huntington Beach Results (con't.)

February 23, 2017

TP: True Positive Bike is correctly detected
FN: False Negative Missed Bike (not detected) FP: False Positive

Detected a bike, but no bike present ("phantoms")
Missed Bike during Red phase
Legally-abiding bicyclist not detected
 Legally Behaving Bikes,
Misclassified as Cars,

| Phase | as Cars | as Cars | as Bikes | Totals | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 42 | 42 |
| 2 | 2 | 2 | 2 | 16 | 18 |
| 3 | 1 | 1 | 1 | 3 | 4 |
| 4 | 10 | 10 | 9 | 35 | 45 |
| 5 | 2 | 6 | 2 | 2 | 4 |
| 6 | 7 | 21 | 16 | 105 | 12 |
| Total | 22 | | | | 127 |

True Event Counts (Misclassifications Removed)

Red FN:	Missed Bike during Red phase
Legal FN:	Legally-abiding bicyclist not detected

Phase	Total FN	Legal FN	FP	Totals Red FN		
1	0	0	$\mathbf{0}$	1	1	
2	2	1	$\mathbf{0}$	28	30	
3	0	0	$\mathbf{0}$	3	3	
4	3	3	$\mathbf{3}$	4	7	
5	1	1	$\mathbf{1}$	6	7	
6	7	7	$\mathbf{0}$	41	48	
Total						
"completely missed bikes"						

Radar Technology to Distinguish Bike/Car Huntington Beach Results (con't.)

Radar Technology to Distinguish Bike/Car Huntington Beach Results (con't.)

February 23, 2017

Cars Misclassified as Bikes By Hour							
	Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Total Count
12:30pm to $1: 30 \mathrm{pm}$	14	7	1	11	0	0	33
1:30pm to $2: 30 \mathrm{pm}$	6	2	0	9	1	0	18
$2: 30 \mathrm{pm}$ to $3: 30 \mathrm{pm}$	15	1	1	8	0	0	25
3:30pm to 4:30pm	7	6	1	7	1	7	29
Totals	42	16	3	35	2	7	105
FP per	hour (No	ikes nor	her Veh	les prese	nt) - "Ph	tom" Det	tions
	Phase 1	Phase 2	Phase 3	Phase 4	Phase 5	Phase 6	Total Count
12:30pm to $1: 30 \mathrm{pm}$	1	4	0	0	1	18	24
1:30pm to 2:30pm	0	7	0	0	1	9	17
2:30pm to $3: 30 \mathrm{pm}$	0	9	2	0	2	12	25
3:30pm to $4: 30 \mathrm{pm}$	0	8	1	4	2	2	17
Totals	1	28	3	4	6	41	83

FP may lead to placing false calls - but at this intersection phases 2 and 6 are both on "recall."

Radar Technology to Distinguish Bike/Car
 Results Summary

Chico: Radar detector extremely accurate for detecting cars. Bicyclist accuracy was also high.

West Sacramento:

- Some bicyclists were detected as cars; these exceeded the radar threshold of $30 \mathrm{~km} / \mathrm{hr}$ (18.6 mph). Vendor responded that threshold may be modified if needed.
- Bicyclist community agreed on:
$>$ Bicycle detector need only detect bicyclists that are slowing down to wait during the red signal.
$>$ Bicycles that are traveling too quickly to go through an intersection during a green interval or turn right need not be detected by the radar.
The issue of occlusion was discovered and addressed (OZP and MBX).

Huntington Beach:

It is important to verify/validate detection zones.
It is a good idea to widen the left-turn bicycle zone beyond limit-line.
Where there is no crosswalk, it is a good idea to extend the bicycle detection zone beyond the limit line.
To attempt to change bicyclist behavior (to respect traffic signal), a traffic sign is a good idea.
Overall accuracy of detecting bicycle or other vehicle potentially 99\%, and discrimination ~90\%.

Radar Technology to Distinguish Bike/Car

Next Steps

Caltrans District 12 may be installing more radar detection systems to accommodate bicycle detection, as part of a rehab. project for multiple traffic signals along Pacific Coast Highway.

It is important to have a validation/verification system when installing any "new" vehicle detection system to ensure proper installation and to verify the system is working as intended.

Use of C1 Reader and VideoSync will be key for recording vehicle data ("new technology") and compare with ground truth (video recorded) data.

